Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Retrovirology ; 16(1): 25, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492165

RESUMO

Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans-as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-inflammatory disorders. Despite having significant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neurological symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simultaneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter-whereas p30II also inhibits PU.1-mediated inflammatory-signaling, differentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate inflammatory signaling associated with enhanced T-cell lymphoproliferation. This review will summarize our current understanding of the pX latency-maintenance factors of HTLV-1 and HTLV-2 and discuss how these products may contribute to the differences in pathogenicity between the human PTLVs.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 2 Humano/genética , Fatores de Transcrição/genética , Proteínas Virais Reguladoras e Acessórias/genética , Latência Viral , Regulação Viral da Expressão Gênica , Infecções por HTLV-I/complicações , Infecções por HTLV-II/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , Humanos , Vírus Linfotrópico T Tipo 1 de Primatas/genética , Vírus Linfotrópico T Tipo 1 de Primatas/patogenicidade , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo
2.
PLoS Pathog ; 15(4): e1007689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964929

RESUMO

NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers caspase-1 activation-induced maturation of interleukin (IL)-1ß and IL-18 and therefore is important for the development of the host defense against various RNA viral diseases. However, the implication of this protein complex in human metapneumovirus (HMPV) disease has not been fully studied. Herein, we report that NLRP3 inflammasome plays a detrimental role during HMPV infection because NLRP3 inflammasome inhibition protected mice from mortality and reduced weight loss and inflammation without impacting viral replication. We also demonstrate that NLRP3 inflammasome exerts its deleterious effect via IL-1ß production since we observed reduced mortality, weight loss and inflammation in IL-1ß-deficient (IL-1ß-/-) mice, as compared to wild-type animals during HMPV infection. Moreover, the effect on these evaluated parameters was not different in IL-1ß-/- and wild-type mice treated with an NLRP3 inflammasome inhibitor. The production of IL-1ß was also abrogated in bone marrow derived macrophages deficient for NLRP3. Finally, we show that small hydrophobic protein-deleted recombinant HMPV (HMPV ΔSH) failed to activate caspase-1, which is responsible for IL-1ß cleavage and maturation. Furthermore, HMPV ΔSH-infected mice had less weight loss, showed no mortality and reduced inflammation, as compared to wild-type HMPV-infected mice. Thus, NLRP3 inflammasome activation seems to be triggered by HMPV SH protein in HMPV disease. In summary, once activated by the HMPV SH protein, NLRP3 inflammasome promotes the maturation of IL-1ß, which exacerbates HMPV-induced inflammation. Therefore, the blockade of IL-1ß production by using NLRP3 inflammasome inhibitors might be a novel potential strategy for the therapy and prevention of HMPV infection.


Assuntos
Inflamassomos/imunologia , Inflamação/imunologia , Interleucina-1beta/fisiologia , Metapneumovirus/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Infecções por Paramyxoviridae/imunologia , Proteínas Oncogênicas de Retroviridae/metabolismo , Animais , Feminino , Humanos , Inflamassomos/metabolismo , Inflamação/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/virologia , Proteínas Recombinantes/metabolismo , Proteínas Oncogênicas de Retroviridae/imunologia , Transdução de Sinais , Replicação Viral
3.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068647

RESUMO

J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in 1972. It is a paramyxovirus classified under the newly proposed genus Jeilongvirus JPV has a genome of 18,954 nucleotides, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. JPV causes little cytopathic effect (CPE) in tissue culture cells but severe disease in mice. The small hydrophobic (SH) protein is an integral membrane protein encoded by many paramyxoviruses, such as mumps virus (MuV) and respiratory syncytial virus (RSV). However, the function of SH has not been defined in a suitable animal model. In this work, the functions of SH of JPV, MuV, and RSV have been examined by generating recombinant JPV lacking the SH protein (rJPV-ΔSH) or replacing SH of JPV with MuV SH (rJPV-MuVSH) or RSV SH (rJPV-RSVSH). rJPV-ΔSH, rJPV-MuVSH, and rJPV-RSVSH were viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPV-ΔSH infection, confirming the role of SH in inhibiting TNF-α production. rJPV-ΔSH induced more apoptosis in tissue culture cells than rJPV, rJPV-MuVSH, and rJPV-RSVSH, suggesting that SH plays a role in blocking apoptosis. Furthermore, rJPV-ΔSH was attenuated in mice compared to rJPV, rJPV-MuVSH, and rJPV-RSVSH, indicating that the SH protein plays an essential role in virulence. The results indicate that the functions of MuV SH and RSV SH are similar to that of JPV SH even though they have no sequence homology.IMPORTANCE Paramyxoviruses are associated with many devastating diseases in animals and humans. J paramyxovirus (JPV) was isolated from moribund mice in Australia in 1972. Newly isolated viruses, such as Beilong virus (BeiPV) and Tailam virus (TlmPV), have genome structures similar to that of JPV. A new paramyxovirus genus, Jeilongvirus, which contains JPV, BeiPV, and TlmPV, has been proposed. Small hydrophobic (SH) protein is present in many paramyxoviruses. Our present study investigates the role of SH protein of JPV in pathogenesis in its natural host. Understanding the pathogenic mechanism of Jeilongvirus is important to control and prevent potential diseases that may emerge from this group of viruses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Infecções por Paramyxoviridae/patologia , Paramyxoviridae/crescimento & desenvolvimento , Proteínas Oncogênicas de Retroviridae/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Humanos , Camundongos , Viabilidade Microbiana , Vírus da Caxumba/genética , Vírus da Caxumba/fisiologia , Infecções por Paramyxoviridae/virologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/fisiologia , Proteínas Oncogênicas de Retroviridae/genética , Virulência , Fatores de Virulência/genética
4.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 541-548, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29458191

RESUMO

Entry of human T-cell lymphotropic virus type 1 (HTLV-1) into host cells is mainly mediated by interactions between the viral envelope glycoprotein surface unit (SU) and three host receptors: glucose transporter type 1, heparin/heparan sulfate proteoglycan, and neuropilin-1 (Nrp1). Here, we analyzed the interaction between HTLV-1 SU and Nrp1 using nuclear magnetic resonance and isothermal titration calorimetry. We found that two SU peptides, residues 85-94 and residues 304-312, bound directly to the Nrp1 b1 domain with affinities of 7.4 and 17.7 µM, respectively. The binding modes of both peptides were almost identical to those observed for Tuftsin and vascular endothelial growth factor A binding to the Nrp1 b1 domain. These results suggest that the C-terminal region of HTLV-1 SU contains a novel site for direct binding of virus to the Nrp1 b1 domain. Our biophysical characterization of the SU peptides may help in developing inhibitors of HTLV-1 entry.


Assuntos
Produtos do Gene env/química , Vírus Linfotrópico T Tipo 1 Humano/química , Neuropilina-1/química , Proteínas Oncogênicas de Retroviridae/química , Sítios de Ligação , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligação Proteica , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo
5.
J Gen Virol ; 98(7): 1587-1599, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714847

RESUMO

Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young cattle and is closely related to human RSV (HRSV), which causes severe respiratory disease in infants and the elderly. The RSV genome encodes a small hydrophobic (SH) protein with viroporin activity. Previous studies have shown that recombinant BRSV lacking the SH gene (rBRSVΔSH) is attenuated in the lungs, but not in the upper respiratory tract, of calves and mucosal vaccination with rBRSVΔSH induced long-lasting protective immunity. Attenuation of rBRSVΔSH may be due to the ability of this virus to induce an early innate response as rBRSVΔSH induces higher levels of pro-inflammatory cytokines than wild-type (wt) rBRSV. In this study, we investigated the effects of the BRSV SH protein on NF-κB p65 phosphorylation, a master step in the regulation of pro-inflammatory cytokines. Expression of SH resulted in the inhibition of NF-κB p65 phosphorylation in response to BRSV infection and extracellular lipopolysaccharide, and a reduction in the production of pro-inflammatory cytokines. In contrast, rBRSVΔSH does not inhibit NF-κB p65 phosphorylation in bovine antigen-presenting cells, including monocytes, macrophages and dendritic cells, resulting in increased expression of pro-inflammatory cytokines and increased activation of T cells compared to cells infected with wt BRSV. These findings highlight an important role for the BRSV SH protein in immune modulation.


Assuntos
Citocinas/metabolismo , Células Dendríticas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Vírus Sincicial Respiratório Bovino/metabolismo , Proteínas Oncogênicas de Retroviridae/imunologia , Fator de Transcrição RelA/metabolismo , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Linhagem Celular , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Humanos , Lipopolissacarídeos/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Monócitos/metabolismo , Monócitos/virologia , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Células RAW 264.7 , Vírus Sincicial Respiratório Bovino/genética , Vírus Sincicial Respiratório Bovino/imunologia , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Linfócitos T/imunologia
6.
Adv Protein Chem Struct Biol ; 104: 307-355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27038378

RESUMO

Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.


Assuntos
Membrana Celular/metabolismo , Canais Iônicos/genética , Mapas de Interação de Proteínas , Proteínas do Envelope Viral/metabolismo , Membrana Celular/genética , Humanos , Canais Iônicos/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
7.
Viruses ; 7(6): 2858-83, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26053927

RESUMO

Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.


Assuntos
Coronavirus/fisiologia , Paramyxovirinae/fisiologia , Porinas/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Deleção de Genes , Humanos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas Oncogênicas de Retroviridae/antagonistas & inibidores , Proteínas Oncogênicas de Retroviridae/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/genética
8.
Eur Urol ; 67(1): 53-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24882673

RESUMO

BACKGROUND: Enzalutamide is a novel antiandrogen with proven efficacy in metastatic castration-resistant prostate cancer (mCRPC). OBJECTIVE: To evaluate enzalutamide's effects on cancer and on androgens in blood and bone marrow, and associate these with clinical observations. DESIGN, SETTING, AND PARTICIPANTS: In this prospective phase 2 study, 60 patients with bone mCRPC received enzalutamide 160mg orally daily and had transilial bone marrow biopsies before treatment and at 8 wk of treatment. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Androgen signaling components (androgen receptor [AR], AR splice variant 7 (ARV7), v-ets avian erythroblastosis virus E26 oncogene homolog [ERG], cytochrome P450, family 17, subfamily A, polypeptide 1 [CYP17]) and molecules implicated in mCRPC progression (phospho-Met, phospho-Src, glucocorticoid receptor, Ki67) were assessed by immunohistochemistry; testosterone, cortisol, and androstenedione concentrations were assessed by liquid chromatography-tandem mass spectrometry; AR copy number was assessed by real-time polymerase chain reaction. Descriptive statistics were applied. RESULTS AND LIMITATIONS: Median time to treatment discontinuation was 22 wk (95% confidence interval, 19.9-29.6). Twenty-two (37%) patients exhibited primary resistance to enzalutamide, discontinuing treatment within 4 mo. Maximal prostate-specific antigen (PSA) decline ≥ 50% and ≥ 90% occurred in 27 (45%) and 13 (22%) patients, respectively. Following 8 wk of treatment, bone marrow and circulating testosterone levels increased. Pretreatment tumor nuclear AR overexpression (> 75%) and CYP17 (> 10%) expression were associated with benefit (p = 0.018). AR subcellular localization shift from the nucleus was confirmed in eight paired samples (with PSA decline) of 23 evaluable paired samples. Presence of an ARV7 variant was associated with primary resistance to enzalutamide (p = 0.018). Limited patient numbers warrant further validation. CONCLUSIONS: The observed subcellular shift of AR from the nucleus and increased testosterone concentration provide the first evidence in humans that enzalutamide suppresses AR signaling while inducing an adaptive feedback. Persistent androgen signaling in mCRPC was predictive of benefit and ARV7 was associated with primary resistance. PATIENT SUMMARY: We report a first bone biopsy study in metastatic prostate cancer in humans that searched for predictors of outcome of enzalutamide therapy. Benefit is linked to a pretreatment androgen-signaling signature. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01091103.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Medula Óssea/tratamento farmacológico , Neoplasias da Medula Óssea/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzamidas , Medula Óssea/metabolismo , Neoplasias da Medula Óssea/secundário , Neoplasias Ósseas/secundário , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Dosagem de Genes , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/uso terapêutico , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroide 17-alfa-Hidroxilase/metabolismo , Testosterona/sangue
9.
J Virol ; 88(11): 6423-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672047

RESUMO

UNLABELLED: Human metapneumovirus (HMPV) encodes three glycoproteins: the glycoprotein, which plays a role in glycosaminoglycan binding, the fusion (F) protein, which is necessary and sufficient for both viral binding to the target cell and fusion between the cellular plasma membrane and the viral membrane, and the small hydrophobic (SH) protein, whose function is unclear. The SH protein of the closely related respiratory syncytial virus has been suggested to function as a viroporin, as it forms oligomeric structures consistent with a pore and alters membrane permeability. Our analysis indicates that both the full-length HMPV SH protein and the isolated SH protein transmembrane domain can associate into higher-order oligomers. In addition, HMPV SH expression resulted in increases in permeability to hygromycin B and alteration of subcellular localization of a fluorescent dye, indicating that SH affects membrane permeability. These results suggest that the HMPV SH protein has several characteristics consistent with a putative viroporin. Interestingly, we also report that expression of the HMPV SH protein can significantly decrease HMPV F protein-promoted membrane fusion activity, with the SH extracellular domain and transmembrane domain playing a key role in this inhibition. These results suggest that the HMPV SH protein could regulate both membrane permeability and fusion protein function during viral infection. IMPORTANCE: Human metapneumovirus (HMPV), first identified in 2001, is a causative agent of severe respiratory tract disease worldwide. The small hydrophobic (SH) protein is one of three glycoproteins encoded by all strains of HMPV, but the function of the HMPV SH protein is unknown. We have determined that the HMPV SH protein can alter the permeability of cellular membranes, suggesting that HMPV SH is a member of a class of proteins termed viroporins, which modulate membrane permeability to facilitate critical steps in a viral life cycle. We also demonstrated that HMPV SH can inhibit the membrane fusion function of the HMPV fusion protein. This work suggests that the HMPV SH protein has several functions, though the steps in the HMPV life cycle impacted by these functions remain to be clarified.


Assuntos
Membrana Celular/metabolismo , Metapneumovirus/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células Gigantes/fisiologia , Células Gigantes/virologia , Humanos , Higromicina B , Microscopia Confocal , Permeabilidade , Plasmídeos/genética , Proteínas Oncogênicas de Retroviridae/genética , Ultracentrifugação , Células Vero , Proteínas Virais Reguladoras e Acessórias/genética , Internalização do Vírus
10.
J Virol ; 87(16): 9344-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23785214

RESUMO

Human T lymphotropic virus type 1 (HTLV-1) mainly causes adult T cell leukemia and predominantly immortalizes/transforms CD4(+) T cells in culture. HTLV-2 is aleukemic and predominantly immortalizes/transforms CD8(+) T cells in culture. We have shown previously that the viral envelope is the genetic determinant of the differential T cell tropism in culture. The surface component (SU) of the HTLV-1 envelope is responsible for binding to the cellular receptors for entry. Here, we dissect the HTLV-1 SU further to identify key domains that are involved in determining the immortalization tropism. We generated HTLV-1 envelope recombinant virus containing the HTLV-2 SU domain. HTLV-1/SU2 was capable of infecting and immortalizing freshly isolated peripheral blood mononuclear cells in culture. HTLV-1/SU2 shifted the CD4(+) T cell immortalization tropism of wild-type HTLV-1 (wtHTLV-1) to a CD8(+) T cell preference. Furthermore, a single amino acid substitution, N195D, in HTLV-1 SU (Ach.195) resulted in a shift to a CD8(+) T cell immortalization tropism preference. Longitudinal phenotyping analyses of the in vitro transformation process revealed that CD4(+) T cells emerged as the predominant population by week 5 in wtHTLV-1 cultures, while CD8(+) T cells emerged as the predominant population by weeks 4 and 7 in wtHTLV-2 and Ach.195 cultures, respectively. Our results indicate that SU domain independently influences the preferential T cell immortalization tropism irrespective of the envelope counterpart transmembrane (TM) domain. We further showed that asparagine at position 195 in HTLV-1 SU is involved in determining this CD4(+) T cell immortalization tropism. The slower emergence of the CD8(+) T cell predominance in Ach.195-infected cultures suggests that other residues/domains contribute to this tropism preference.


Assuntos
Linfócitos T CD4-Positivos/virologia , Transformação Celular Viral , Produtos do Gene env/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Proteínas Oncogênicas de Retroviridae/metabolismo , Tropismo Viral , Fatores de Virulência/metabolismo , Substituição de Aminoácidos , Células Cultivadas , Análise Mutacional de DNA , Produtos do Gene env/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Oncogênicas de Retroviridae/genética
11.
Virus Res ; 175(2): 134-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643491

RESUMO

We have used mild detergent to analyze the core of Moloney Murine Leukemia Virus (MoMLV) and core-like complexes in infected cells. The immature core consists of the Gag polyprotein (PrGag) and viral RNA (vRNA). It is known to be detergent-resistant, in contrast to the mature Gag core. The core matures by cleavage of PrGag into MA (matrix), p12, CA (capsid) and NC (nucleocapsid) protein. We found that mature Gag proteins were bound to the PrGag cores. The degree of binding differed widely. No (<0.1%) p12 bound, low amount of CA (3-5%), and higher amount of MA (13-20%) bound. Varying NC was bound (5-15%). NC could be released by RNase A in agreement with its binding to viral RNA. The TM (transmembrane) protein was also examined. A low amount of TM was bound to the PrGag core (approximately 5%), whereas a very high amount (65%) of the PreTM (TM with the cytoplasmic R peptide tail) bound. The binding in the PrGag core appears to occur by direct protein-protein interactions as only minute amounts of lipids including raft lipids were observed after detergent treatment.


Assuntos
Vírus da Leucemia Murina de Moloney/fisiologia , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Ligação Proteica
12.
Cell ; 151(3): 559-75, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23084400

RESUMO

ETS transcription factors ETV2, FLI1, and ERG1 specify pluripotent stem cells into induced vascular endothelial cells (iVECs). However, iVECs are unstable and drift toward nonvascular cells. We show that human midgestation c-Kit(-) lineage-committed amniotic cells (ACs) can be reprogrammed into vascular endothelial cells (rAC-VECs) without transitioning through a pluripotent state. Transient ETV2 expression in ACs generates immature rAC-VECs, whereas coexpression with FLI1/ERG1 endows rAC-VECs with a vascular repertoire and morphology matching mature endothelial cells (ECs). Brief TGFß-inhibition functionalizes VEGFR2 signaling, augmenting specification of ACs into rAC-VECs. Genome-wide transcriptional analyses showed that rAC-VECs are similar to adult ECs in which vascular-specific genes are expressed and nonvascular genes are silenced. Functionally, rAC-VECs form stable vasculature in Matrigel plugs and regenerating livers. Therefore, short-term ETV2 expression and TGFß inhibition with constitutive ERG1/FLI1 coexpression reprogram mature ACs into durable rAC-VECs with clinical-scale expansion potential. Banking of HLA-typed rAC-VECs establishes a vascular inventory for treatment of diverse disorders.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Células Endoteliais/citologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos
13.
Virus Res ; 160(1-2): 102-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21683102

RESUMO

The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway.


Assuntos
Metapneumovirus/química , Metapneumovirus/metabolismo , Proteínas Oncogênicas de Retroviridae/química , Proteínas Oncogênicas de Retroviridae/metabolismo , Membrana Celular/química , Citoplasma/química , Retículo Endoplasmático/química , Complexo de Golgi/química , Transporte Proteico
14.
Retrovirology ; 8: 35, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21569491

RESUMO

BACKGROUND: Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. RESULTS: Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. CONCLUSIONS: The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.


Assuntos
Vírus da Leucemia Felina/patogenicidade , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Ligação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Gatos , Linhagem Celular , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Conformação Proteica , Valina/genética
15.
Cancer Sci ; 102(4): 890-4, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21244576

RESUMO

Latent infection of human T-cell leukemia virus type 1 (HTLV-1) is considered to be preferentially associated with CCR4(+) CD4(+) T cells. Here we report that c-Maf, one of the critical transcription factors for Th2 differentiation, suppresses the transcriptional activity of HTLV-1 Tax by competing for CREB-binding protein. Notably, c-maf expression is selectively induced in a fraction of CCR4(+) CD4(+) T cells upon activation. Furthermore, c-Maf significantly decreases Tax-induced HTLV-1 envelope gp46 gene expression from an infectious HTLV-1 molecular clone and tax expression in a cell-free HTLV-1 infection system. Collectively, c-Maf may play a role in latent infection of HTLV-1 in CCR4(+) CD4(+) T cells by negatively regulating Tax activity.


Assuntos
Proteína de Ligação a CREB/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteína de Ligação a CREB/genética , Transformação Celular Viral , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Produtos do Gene tax/antagonistas & inibidores , Produtos do Gene tax/genética , Infecções por HTLV-I/genética , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Luciferases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-maf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-maf/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores CCR4/genética , Receptores CCR4/metabolismo , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th2 , Ativação Transcricional , Vírion
16.
J Virol ; 85(1): 32-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980504

RESUMO

At 18,954 nucleotides, the J paramyxovirus (JPV) genome is one of the largest in the family Paramyxoviridae, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. To study the function of novel paramyxovirus genes in JPV, a plasmid containing a full-length cDNA clone of the genome of JPV was constructed. In this study, the function of the small hydrophobic (SH) protein of JPV was examined by generating a recombinant JPV lacking the coding sequence of the SH protein (rJPVΔSH). rJPVΔSH was viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPVΔSH infection, suggesting that SH plays a role in inhibiting TNF-α production. rJPVΔSH induced more apoptosis in tissue culture cells than rJPV. Virus-induced apoptosis was inhibited by neutralizing antibody against TNF-α, suggesting that TNF-α contributes to JPV-induced apoptosis in vitro. The expression of JPV SH protein inhibited TNF-α-induced NF-κB activation in a reporter gene assay, suggesting that JPV SH protein can inhibit TNF-α signaling in vitro. Furthermore, infection of mice with rJPVΔSH induced more TNF-α expression, indicating that SH plays a role in blocking TNF-α expression in vivo.


Assuntos
NF-kappa B/efeitos dos fármacos , Infecções por Paramyxoviridae/virologia , Paramyxovirinae/patogenicidade , Proteínas Oncogênicas de Retroviridae/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Apoptose , Linhagem Celular , Chlorocebus aethiops , Células L , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Infecções por Paramyxoviridae/metabolismo , Paramyxovirinae/genética , Paramyxovirinae/metabolismo , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células Vero , Ensaio de Placa Viral
17.
Immunol Res ; 48(1-3): 27-39, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20717743

RESUMO

Xenotropic murine leukemia virus-related virus (XMRV) is a new human retrovirus originally identified in prostate cancer patients with a deficiency in the antiviral enzyme RNase L. XMRV has been detected with varying frequencies in cases of prostate cancer and chronic fatigue syndrome (CFS), as well as in a small proportion of healthy individuals. An etiologic link between XMRV infection and human disease, however, has yet to be established. Here, we summarize existing knowledge regarding the characteristics of XMRV replication, association of XMRV with prostate cancer and CFS, and potential mechanisms of XMRV pathophysiology. We also highlight several areas, such as the establishment of standardized assays and the development of animal models, as future directions to advance our current understanding of XMRV and its relevance to human disease.


Assuntos
Síndrome de Fadiga Crônica/epidemiologia , Neoplasias da Próstata/epidemiologia , Infecções por Retroviridae/epidemiologia , Proteínas Oncogênicas de Retroviridae/metabolismo , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia , Animais , Modelos Animais de Doenças , Síndrome de Fadiga Crônica/genética , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Infecções por Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/genética , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/patogenicidade
18.
FEBS Lett ; 584(13): 2786-90, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20471980

RESUMO

Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability.


Assuntos
Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas Oncogênicas de Retroviridae/ultraestrutura , Western Blotting , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Lipossomos/química , Microscopia Eletrônica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Oncogênicas de Retroviridae/química , Proteínas Oncogênicas de Retroviridae/genética
19.
Blood ; 115(4): 815-23, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19965683

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia and several lymphocyte-mediated inflammatory diseases. Persistent HTLV-1 infection is determined by a balance between host immune responses and virus spread. Immunomodulatory therapy involving HTLV-1-infected patients occurs in a variety of clinical settings. Knowledge of how these treatments influence host-virus relationships is not understood. In this study, we examined the effects of cyclosporine A (CsA)-induced immune suppression during early infection of HTLV-1. Twenty-four New Zealand white rabbits were split into 4 groups. Three groups were treated with either 10 or 20 mg/kg CsA or saline before infection. The fourth group was treated with 20 mg/kg CsA 1 week after infection. Immune suppression, plasma CsA concentration, ex vivo lymphocyte HTLV-1 p19 production, anti-HTLV-1 serologic responses, and proviral load levels were measured during infection. Our data indicated that CsA treatment before HTLV-1 infection enhanced early viral expression compared with untreated HTLV-1-infected rabbits, and altered long-term viral expression parameters. However, CsA treatment 1 week after infection diminished HTLV-1 expression throughout the 10-week study course. Collectively, these data indicate immunologic control is a key determinant of early HTLV-1 spread and have important implications for therapeutic intervention during HTLV-1-associated diseases.


Assuntos
Ciclosporina/farmacologia , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Hospedeiro Imunocomprometido , Imunossupressores/farmacologia , Animais , Relação CD4-CD8 , Ciclosporina/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Humanos , Imunossupressores/sangue , Células Jurkat , Linfocitose/imunologia , Linfocitose/virologia , Linfoma de Células T/virologia , Coelhos , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/transplante , Linfócitos T Auxiliares-Indutores/virologia , Carga Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
20.
J Virol ; 83(21): 10908-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19692463

RESUMO

Despite the susceptibility of dendritic cells (DCs) to human T-cell lymphotropic virus type 1 (HTLV-1) infection and the defined role of these cells in disease pathogenesis, the mechanisms of viral binding to DCs have not been fully delineated. Recently, a glucose transporter, GLUT-1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) were demonstrated to facilitate HTLV-1 entry into T cells. DCs express their own array of antigen receptors, the most important being the DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) with respect to retrovirus binding. Consequently, the role of DC-SIGN and other HTLV-1 attachment factors was analyzed in viral binding, transmission, and productive infection using monocyte-derived DCs (MDDCs), blood myeloid DCs, and B-cell lines expressing DC-SIGN. The relative expression of DC-SIGN, GLUT-1, HSPGs, and NRP-1 first was examined on both DCs and B-cell lines. Although the inhibition of these molecules reduced viral binding, HTLV-1 transmission from DCs to T cells was mediated primarily by DC-SIGN. DC-SIGN also was shown to play a role in the infection of MDDCs as well as model B-cell lines. The HTLV-1 infection of MDDCs also was achieved in blood myeloid DCs following the enhancement of virus-induced interleukin-4 production and subsequent DC-SIGN expression in this cell population. This study represents the first comprehensive analysis of potential HTLV-1 receptors on DCs and strongly suggests that DC-SIGN plays a critical role in HTLV-1 binding, transmission, and infection, thereby providing an attractive target for the development of antiretroviral therapeutics and microbicides.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas , Vírus Linfotrópico T Tipo 1 Humano , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Interleucina-4/imunologia , Lectinas Tipo C/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Interferência de RNA , Receptores de Superfície Celular/genética , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Ligação Viral , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...